查看原文
其他

建设国际领先大科学装置,助力高水平科技自立自强 | 科技导报

西桂权、陈晓怡等 科技导报 2024-02-04

大科学装置是科技创新的国之重器。党的十八大以来,中国大科学装置建设稳步推进,取得了众多具有重大科学意义的创新性成果,提升了中国在国际上的科技竞争力。回顾了党的十八大以来中国大科学装置建设发展情况,总结了依托大科学装置所取得的成就,分析了其在助力实现高水平科技自立自强中的突出作用。针对中国大科学装置发展中存在的问题,从加大经费投入、解决关键工艺、加强国际合作等方面提出了建议。

大科学装置(large scale scientific facility)是人类发现自然规律、探索未知世界、实现技术变革的大型设施,是取得重大科学突破的保障之一。在中国,大科学装置也常被称为“国家重大科技基础设施”。大科学装置具有推进多学科综合交叉发展、突破高新技术瓶颈的强大支撑能力,是国之重器、科技利器。大科学装置具有明确的科学目标,建设时间长、体量大、投资大,产出是科学知识和技术成果,而不是直接的经济效益。按照不同的应用目的,大科学装置可以被分为专用研究装置、公共实验平台和公益基础设施3种类型。大科学装置已经成为衡量一个国家科技实力和综合国力的重要标志,是维护国家安全、促进经济社会可持续发展必不可少的重要基础设施。


中国大科学装置发展基本情况

中国大科学装置经历了从无到有、从小到大、从学习模仿到自主创新的过程(图1),在提高国家自主创新能力方面占据重要地位。20世纪80年代,中国以北京正负电子对撞机(BEPC)为标志开始了大科学装置建设的新阶段。之后以中国科学院为主导,陆续建设了一批大科学装置,对促进科技事业和其他各项事业发展起到了积极作用。目前,中国在建和运行的重大科技基础设施项目总量已达57个,数量位居全球前列。中国大科学装置在不同时期呈现出了不同的发展特点。

图1 中国大科学装置发展历程

1)萌芽期(1949年至改革开放前)。1949年之后,国家主要围绕“两弹一星”的研制工作,布局建设了一些如材料试验堆、点火中子源等研究设施。这些设施虽然不能完全称之为大科学装置,却是大科学装置的萌芽。

2)起步期(20世纪80年代初至2000年)。这一阶段布局了10余个大科学装置,主要集中在高能物理学、光学、遥感科学等领域,且主要用于公益科技和专用研究。区域分布上主要以北京地区为主,依托单位基本为中国科学院各个院所。总体来说,此时期大科学装置布局不均衡,发展内容不够全面。

3)发展期(2001—2010年)。这一阶段大科学装置呈现出均衡发展趋势,区域分布由北京为主扩展到了中国东部。其中“十一五”期间设施数量呈跨越式增长,共部署了散裂中子源、强磁场等12项大科学装置,覆盖了环境科学、地球科学、粒子物理与核物理、天文学、生命科学等领域,总投资超过60亿元。

4)追赶期(2011至现在)。这一阶段中国对大科学装置进行了前瞻部署和系统布局,投入力度持续加大。中国的大科学装置建设无论从数量,还是从投入金额来看,都呈现逐年增加的趋势。在国家发展和改革委员会的规划组织和投资支持下,“十二五”期间,中国启动建设了地球系统数值模拟装置(Earth System Numerical Simulation Facility)、高海拔宇宙线观测站(LHAASO)、高效低碳燃气轮机试验装置等16项重大科技基础设施,总投资超过了100亿元“。十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,按照“成熟一项、启动一项”的原则,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。“十四五”期间,中国拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。


党的十八大以来中国大科学装置建设发展特点

党的十八大以来,中国大力实施创新驱动发展战略,在大科学装置建设上多点发力。围绕战略导向、前瞻引领、应用支撑、民生改善等方面建设一批大科学装置。北京怀柔高能同步辐射光源(High Energy Photon Source,HEPS)已完成全部土建结构施工;合肥聚变堆主机关键系统综合研究设施(CRAFT)园区已经启用;稳态强磁场、500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)、散裂中子源等一国之重器陆续建成使用;慧眼”“悟空”“墨子等科学实验卫星成功发射,奋斗者号全海深载人潜水器成功挑战马里亚纳海沟等。总之,近10年来,中国大科学装置建设持续推进,正在加速实现从跟跑、并跑向领跑的转变,为原始创新和关键技术攻关提供更强力的支撑。

01统筹规划、政策支持力度不断加大

党的十八大以来,为促进大科学装置健康发展,党中央、国务院及省市等机构不断出台相关政策,从国家层面、省市层面进行战略部署。《国家创新驱动发展战略纲要》《国家重大科技基础设施建设中长期规划(2012—2030年)》《国家重大科技基础设施十三五规划》《国家重大科技基础设施管理办法》等政策文件均强调要以大科学装置为核心,打造高端引领的创新增长极,并对中国大科学装置的布局、投资、建设和管理进行了阐述,有效地推动了大科学装置建设与发展。

十四五时期,《十四五国家科技创新规划》明确了十四五大科学装置建设重点。北京、上海、安徽作为综合性国家科学中心所在地,围绕科技前沿和国家重大战略需求,在各自的十四五规划中明确提出要加强大科学设施布局,跨区域整合创新资源,形成大科学装置集群。《粤港澳大湾区发展规划纲要》提出,大湾区深入实施创新驱动发展战略,深化粤港澳创新合作,加快推进大湾区重大科技基础设施建设。在这些规划、政策的推动下,中国大科学装置规模不断增长,综合效应日益显现。

02世界级大科学装置集群初步成型
大科学装置集群在技术突破、科学研究和支撑经济社会发展等方面具有一定优势。北京、上海、合肥、粤港澳等地依托建设综合性国家科学中心,初步形成集群化态势、具有一定国际影响力的大科学装置集群。北京怀柔综合性国家科学中心距核心城区相对较远,重点聚焦基础研究;上海张江综合性国家科学中心紧邻上海市中心,重点推动小而精的应用转化;合肥综合性国家科学中心集中布局一批大科学装置集群和交叉前沿研究平台,侧重于科学发现;粤港澳大湾区综合科学中心依靠深圳、广州、东莞、香港等多点城市构建大科学装置集群。
1)怀柔是北京地区大科学装置最为密集的区域。北京怀柔综合性国家科学中心自获批建设以来,在空间科学、物质科学、能源科学等领域布局建设了5个大科学装置(表1),同时集聚了一批前沿交叉研究平台、科教基础设施、重大产业技术开发平台,初步形成了促进重大原始创新成果产出的战略高地。落户于这里的5个大科学装置中,有的抢先“开跑”,也有的正在加速建设。地球系统数值模拟装置、综合极端条件实验装置已投入运行;多模态跨尺度生物医学成像设施工程已于2022年11月竣工;子午工程二期在2023年建设“收官”;高能同步辐射光源预计2025年完成装置建设。这些大科学装置将为北京国际科技创新中心建设提供重要支撑。

表1 北京怀柔综合性国家科学中心大装置基本情况

2)上海张江基本建成光子大科学装置集群。上海以张江实验室为依托,以重大任务实施、重大平台建设为牵引,先后建设了上海光源一期、国家蛋白质科学研究(上海)设施、硬X射线自由电子激光装置、软X射线自由电子激光装置等一批大科学设施,覆盖了生命科学、光子科学、能源科学、海洋科学等领域。据《2021上海科技进步报告》显示,截至2021年底,上海在建、在用的大科学设施已达到14个,其中已运行的有8个、在建的有6个(表2)。经过多年建设发展,上海张江初步形成了全球光科技领域规模大、种类全、功能强的光子大科学装置集群,为建设张江综合性国家科学中心,实现上海建设具有全球影响力的科技创新中心目标奠定了坚实基础。

表2 上海运行、在建设施基本情况

3)安徽合肥着力打造世界一流的大科学装置集中区。为更好推进合肥综合性国家科学中心建设,合肥在滨湖科学城布局建设了大科学装置集中区,布局建设8个大科学装置。截至2022年,安徽合肥已建成同步辐射装置、全超导托卡马克、稳态强磁场装置3个大科学装置。2017年9月,稳态强磁场实验装置通过国家验收,标志着中国成为继美国、法国、荷兰、日本之后第5个拥有稳态强磁场的国家。2022年3月,合肥第4个大科学装置——聚变堆主机关键系统综合研究设施(CRAFT)园区正式交付启用(表3)。大科学装置是合肥综合性国家科学中心的重要基石,以大科学装置为基础,提高原始创新能力,支撑综合性国家科学中心高质量发展,打造有国际影响力的创新之都指日可待。

表3 合肥运行、在建设施基本情况

4)粤港澳大湾区依靠产业发展构建大科学装置集群。加快布局建设大科学装置,是建设粤港澳大湾区综合性国家科学中心科技和产业创新高地的必然选择。粤港澳大湾区综合性国家科学中心的核心大科学装置——中国散裂中子源于2018年8月通过验收工作。作为继英国、美国、日本散裂中子源之后的世界第4台脉冲式散裂中子源,它的建成改变了以往中国科学家只能到国外散裂中子源上申请实验机时的历史。目前,深圳正在规划建设大科学装置集群,加快布局“高精尖”实验室。光明科学城规划建设提速,材料基因组、合成生物研究、脑解析与脑模拟等方面的大科学装置加快建设(表4)。这些重要的大科学装置,未来将为粤港澳大湾区产业升级提供重要保障。

表4 大湾区部分设施基本情况

03自主创新设计能力不断增强

“十二五”以来,中国大科学装置设计建造由以前的跟跑为主,逐步转到跟跑、并跑的局面,许多装置自主创新设计能力不断增强。从20世纪80年代末,依托于北京正负电子对撞机的第一代同步辐射光源,到安徽合肥光源(第二代)、上海同步辐射光源(第三代),再到北京怀柔高能同步辐射光源(第四代),大装置分辨率、亮度等性能不断提高。同时,怀柔同步辐射光源采用了研究团队自主研制的新型X射线像素阵列探测器样机,实现了加速器、光束线等多个关键技术的创新。北京怀柔的地球系统数值模拟装置是中国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。被誉为“中国天眼”的FAST是世界上最大和最灵敏的单口径射电望远镜,且具有中国自主知识产权。被誉为“人造太阳”的合肥全超导托卡马克核聚变实验装置是中国自行设计研制的世界上第一个全超导非圆截面托卡马克核聚变实验装置。

04集聚人才的“磁石效应”日益凸显

人是科技创新中最关键的因素。大科学装置在培养和凝聚人才、促进国际科技合作方面能够发挥独特作用。例如,中国科学院合肥物质科学研究院强磁场中心为王俊峰、张欣、王文超等“哈佛八剑客”提供了施展才华的舞台;上海光源不仅吸引集聚了世界顶尖科学家,也培育了大量经验丰富的大科学装置建设和运营工作人员,支撑着中国光子科学的创新发展。大科学装置在建设和运行过程中,集聚和培养了一大批懂科学、懂工程、懂技术、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以中国散裂中子源为例,中国科学院高能物理研究所在东莞集聚和培养了一支有400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。

05开放共享程度有所增加

大科学装置作为推动科技创新的重要平台,具有开放性、国际化特点,其不仅能够向世界展示中国科技水平与经济实力,同时也能够促进全球科学家与中国的合作交流。中国大科学装置正向世界敞开怀抱。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。北京怀柔综合性国家科学中心的综合极端条件实验装置首批5个实验站进入开放运行阶段,2022年1月起正式面向中外用户开放预约使用,截至2022年2月已收到来自国内外团队的50余份申请。江门中微子实验获得国际实物贡献约3000万欧元,共有境外16个国家和地区约300多位科学家参加。自2007年超导托卡马克核聚变实验装置正式投入运行以来,中国科学院等离子体物理研究所已与30多个国家的近100多个研究机构建立了广泛而深入的合作伙伴关系,近年来多次帮助国际合作伙伴建造聚变研究部件。这些都充分表达了中国国际科技合作开放包容的积极态度。


高水平的科研成果不断涌现

01突破一批关键核心技术

党的十八大以来,中国在大科学装置建设上持续发力,也催生出一批世界级成果,覆盖能源、物理、材料、生命科学等多个前沿交叉和高科技研发领域,提升了基础前沿研究水平和自主创新能力。“中国天眼”实现了跟踪、漂移扫描、运动中扫描等多种观测模式,于2018年4月首次发现距地球约4000光年的毫秒脉冲星。2017年,全超导托卡马克核聚变实验装置首次实现了稳定的101.2s稳态长脉冲高约束等离子体运行,创造了新的世界纪录。2022年5月,中国“墨子号”实现1200km地表量子态传输新纪录,抢占了量子科技创新的制高点。大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率,该结果对中微子物理的未来发展方向起着决定性作用。

02产生一批高水平项目和研究成果

截至2021年底,上海光源一期累计提供实验机时388649h,用户累计发表SCI论文近8000篇。国家蛋白质科学研究(上海)设施全年为用户提供科研机时8.27万h,用户发表SCI论文445篇。截至2021年9月,合肥稳态强磁场实验装置共运行了45万多h,依托装置开展了近2700项课题研究、发表学术论文1700余篇,其中一区期刊论文404篇、Nature Index期刊文章接近400篇,推动了中国稳态强磁场下前沿科学研究。散裂中子源的高度开放共享也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关,用户单位及完成课题数逐年增加,自建成投入使用以来,全球注册用户超过3400人,完成课题600多项,有力推动了中国中子散射应用和关键技术的重大发展。

03催生一批新成果和新应用

大科学装置产生了一大批重大原创成果,催生了一批战略性产业技术。通过建设若干重大科技成果概念验证中心和中试平台,推动大科学装置衍生技术就地交易、就地转化、就地应用,促进“国之重器”走进日常生活。“中国天眼”在建造过程中突破了很多技术瓶颈,如抗疲劳索网技术在港珠澳大桥工程建设中得到了应用。依托合肥稳态强磁场装置取得了超预期的转化成果,包括催生出多个国家I类创新靶向药物,授权发明专利30余项,孵化出高科技企业4家。国家蛋白质科学研究(上海)设施解析了新冠肺炎病毒结构,有效助力疫情防控和疫苗研发。上海光源助力破解新冠肺炎病毒关键蛋白结构,为抗病毒药物研制提供了必要的基础数据。总之,中国大科学装置正以越来越多世界级创新成果,显示着“国之重器”的巨大能量。


中国大科学装置建设发展过程中存在的问题及建议

01现存问题

近年来,中国大科学装置在推进科技强国建设、打造战略科技力量中发挥了重要作用,取得了一系列原始创新成果,但因中国大科学装置建设起步较晚,与美国、德国等世界先进国家相比,在建设、管理等方面仍有一定差距,主要存在以下问题。

1)后续经费投入仍需充分考虑。大科学装置建成后,还有后续巨大的运营成本,在运行过程中每年仍需要大量的投入,如运行费用、科研费用和改进发展费用等。例如,兰州重离子加速器国家累计投资逾10亿元,每年还需1.1亿元用于运行和维护更新。散裂中子源每年投入进行设备维护,保障运行和开放的经费达到设备建设经费的10%~20%。发达国家经验显示,对于大科学装置后续的科研投入尤其是人员经费,大多要占建设经费的10%~50%。总体来看,中国基础研究投入只占研发经费的5%,而大科学装置建设经费仅占基础研究经费投入的约5%,对比美国这2个数据分别是15%和10%。可见中国大科学装置建设经费投入与发达国家还有一定差距。

2)关键部件的自主创新需进一步加强。中国目前在役大科学装置技术水平总体上以跟踪为主,支撑大科学装置建设的很多相关设备从国外采购,关键设备与工艺技术对国外产品依赖严重,存在卡脖子风险。以北京怀柔综合性国家科学中心多模态跨尺度生物医学成像设施为例,设施有价值12亿的仪器装备,其中30%由改造升级而来,30%由中国自主研发制造,其余40%来自国外购买。

3)开放合作共享还不足。中国大科学装置建设主要是采取自行建设,建成后依托设施参与国际合作的模式。从国际合作来看,中国在运行的大科学装置中,由国内外共同参与重大科技项目建设的大科学装置占比不足10%,以自身大科学装置为基础参与国际科技项目合作的大科学装置占比约30%。而且在国际形势较为复杂的背景下,大科学装置国际合作和人才引进存在一定困难。

02建议

统筹推进大科学装置布局建设,充分发挥大科学装置促进科技创新的重要作用是建设科技强国的必然要求。利用大装置解决国家战略需求中的前瞻性、基础性和战略性问题,突破“卡脖子”技术,是实现高水平科技自立自强,把创新发展主动权牢牢掌握在自己手中的重要举措。面对以上问题,结合中国大科学装置建设、发展的实际情况,提出以下几方面建议。

1)拓展大科学装置经费投入来源。据统计,过去10年,大科学装置投资建设基本稳定在每5年160亿元左右,平均每年约32亿元,而且这些费用往往不包括研究经费、人员费、配套经费等。应遵循全生命周期管理理念,在大科学装置申报论证阶段就充分考虑到大科学装置维护、更新和提升所需的资金。明晰国家和地方权责,协调地方政府和社会力量共同参与大科学装置的建设。在中国科学院与国家自然科学基金委员会联合设立“大科学装置科学研究联合基金”支持基础研究的基础上,由企业和政府共同出资设立设施后期保障基金,参与企业在使用设备时可优先考虑或降低收费标准等。

2)建立技术联盟,解决大科学装置关键技术卡脖子风险。以大装置常用的仪器仪表为例,目前中国高端仪器仪表产品等的关键核心零部件基本依赖进口,仪器仪表整机厂家存在着核心技术“空心化”问题。高端科研仪器设备市场基本由美国、欧洲、日本的企业控制。美国《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家为日本公司。为降低大科学装置核心零部件对国外产品的依赖度,鼓励具有专项技术的高科技企业、科研院所与高校形成大科学装置技术研发联盟,对相关技术联合攻关,突破大科学装置相关工艺与装备技术难点,实现器件自主研发和国产化。

3)利用大科学装置开展更多国际合作。在大科学装置建设运行中,面向国外开放,引入国际合作者,依托这些设施开展联合研究、人员交流、人才培养等,提升中国国际科技合作水平。充分考虑国际科技安全,加强以中国为主的大科学装置的国际合作。同时积极参与国际大科学装置项目,积累建设管理、运行和维护经验等。


结论

大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技自立自强必备的科技基础设施。面向未来,需前瞻性谋划和系统性布局一些重大的大科学装置,不断夯实国家科技创新的平台基础。依托大科学装置,推动中国在基础研究和原创性、引领性科技攻关方面取得更多、更大的突破,助力实现科技强国的伟大梦想。

本文作者:西桂权、陈晓怡、谭晓

作者简介:西桂权,北京市科学技术研究院科技情报研究所,副研究员,研究方向为科技情报及科技政策;谭晓(通信作者),北京市科学技术研究院科技情报研究所,副研究员,研究方向为科技安全情报。

原文发表于《科技导报》2023年第17期,欢迎订阅查看。

内容为【科技导报】公众号原创,欢迎转载
白名单回复后台「转载」

精彩内容回顾

李景虹院士:推动创造性转化、创新性发展,共创现代化的美好未来 | 科技导报

2023年诺贝尔化学奖揭晓!

刚刚,2023年诺贝尔物理学奖揭晓!

2023年诺贝尔生理学或医学奖揭晓

双节同庆 | 迎国庆,贺中秋!

《科技导报》创刊于1980年,中国科协学术会刊,主要刊登科学前沿和技术热点领域突破性的成果报道、权威性的科学评论、引领性的高端综述,发表促进经济社会发展、完善科技管理、优化科研环境、培育科学文化、促进科技创新和科技成果转化的决策咨询建议。常设栏目有院士卷首语、智库观点、科技评论、热点专题、综述、论文、学术聚焦、科学人文等。


《科技导报》微信公众平台创建于2014年,主要刊登《科技导报》期刊内容要点,报道热点科技问题、科技事件、科学人物,打造与纸刊紧密联系又特色鲜明的新媒体平台。科技导报公众号聚集了数万名专心学术的未来之星和学术大咖,添加编辑微信,让优秀的你有机会与志趣相同的人相遇。


继续滑动看下一个

建设国际领先大科学装置,助力高水平科技自立自强 | 科技导报

西桂权、陈晓怡等 科技导报
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存